PHY-501

Mathematical Physics and Classical Mechanics M. Sc. PHYSICS (MSCPHY-12/13/16/17)

First Year, Examination, 2018
Time: 3 Hours
Max. Marks : 80
Note : This paper is of eighty (80) marks containing three (03) Sections A, B and C. Learners are required to attempt the questions contained in these Sections according to the detailed instructions given therein.

Section-A
 (Long Answer Type Questions)

Note : Section 'A' contains four (04) long answer type questions of nineteen (19) marks each. Learners are required to answer two (02) questions only.

1. Describe generating function for Legendre polynomials. Show that :
(a) $\mathrm{P}_{n}(1)=1$
(b) $\mathrm{P}_{n}(-x)=(-1)^{n} \mathrm{P}_{n}(x)$

Find $\mathrm{P}_{n}(-1)$.
2. (a) Show that the Fourier transform of a Gaussian function is also Gaussian in the corresponding Fourier space.
(b) Show that Laplace transform possesses the properties of linearity, shifting and change of scale.
3. (a) Explain the Hamilton-Jacobi equation for Hamilton's characteristic function.
(b) Obtain the equation of motion of a dynamical variable $\mathrm{F}(q, p, t)$ in terms of the Poisson bracket.
4. (a) State and prove addition and subtraction rules governing tensor analysis.
(b) Construct a backward difference table using the values given below :

x	$y=f(x)$
0	2
1	3
2	5
3	6
4	10

Section-B
(Short Answer Type Questions)
Note : Section 'B' contains eight (08) short answer type questions of eight (08) marks each. Learners are required to answer four (04) questions only.

1. Show that :

$$
\int x \mathbf{J}_{0}^{2}(x) d x=\frac{1}{2} x^{2}\left[\mathrm{~J}_{0}^{2}(x)+\mathrm{J}_{1}^{2}(x)\right]
$$

2. Prove the orthogonality of the Hermite polynomials :

$$
\int_{-\infty}^{\infty} e^{-x^{2}} \mathrm{H}_{m}(x) \mathrm{H}_{n}(x) d x=0, m \neq n
$$

3. Find the Fourier transform of the function :

$$
f(t)=\left\{\begin{array}{cl}
0 & t<0 ; \\
e^{-\alpha t} & t \geq 0 ;
\end{array}\right.
$$

4. Find the Laplace transform of the function t. $e^{2 t}$.
5. What is a metric tensor and express it as a sum of a symmetric and skew symmetric tensors?
6. Derive Lagrange's equations from D'Alembert's principle.
7. Derive an expression for the Stirling interpolation formula.
8. Explain the basic idea of numerical differentiation. Discuss with one suitable example.

Section-C

(Objective Type Questions)

Note: Section 'C' contains ten (10) objective type questions of one (01) mark each.

Choose the correct option :

1. If J_{0} and J_{1} are Bessel function, then $\mathrm{J}_{1}(x)$ is given by :
(a) $-\mathrm{J}_{0}$
(b) $\mathrm{J}_{0}(x)-\frac{1}{x} \mathrm{~J}_{1}(x)$
(c) $\mathrm{J}_{0}(x)+\frac{1}{x} \mathrm{~J}_{1}(x)$
(d) None of these
(B-16) P. T. O.
2. If $\mathrm{P}_{n}(x)$ be the Legendre polynomial, then $\mathrm{P}_{n}^{\prime}(-x)$ is equal to :
(a) $(-1)^{n} \mathrm{P}_{n}(x)$
(b) $(-1)^{n} \mathrm{P}_{n}^{\prime}(x)$
(c) $(-1)^{n+1} \mathrm{P}_{n}{ }^{\prime}(x)$
(d) $\mathrm{P}_{n}{ }^{\prime \prime}(x)$
3. What is Fourier sine transform of $x e^{-x^{2} / 2}$?
(a) $\frac{s}{\sqrt{2}} e^{-s^{2} / 2}$
(b) $s e^{-s^{2}}$
(c) $s e^{-s^{2} / 2}$
(d) None of these
4. Find the Laplace transform of $\mathrm{F}(t)=\left\{\begin{array}{cc}t, & 0<t<2 \\ 2, & 2<t\end{array}\right.$:
(a) $\frac{1-e^{-2 s}}{s}$
(b) $\frac{1-e^{-2 s}}{s^{3}}$
(c) $\frac{1-e^{-2 s}}{2 s^{2}}$
(d) $\frac{1-e^{-2 s}}{s^{2}}$
5. If $\mathrm{S}_{i j}$ is a symmetric tensor and $\mathrm{A}_{i j}$ is antisymmetric tensor, what is the product $\mathrm{A}_{i j} \mathrm{~S}_{i j}$?
(a) a tensor of mixed symmetry
(b) an antisymmetric tensor
(c) a symmetric tensor
(d) zero
6. For the Ricci tensor $\mathrm{R}_{\mu \nu}$, what is the quantity $g^{\mu \nu} \mathrm{R}_{\mu \nu}$ in summation convention?
(a) tensor of rank four
(b) tensor of rank two
(c) any scalar
(d) scalar curvature
7. The Lagrangian of a particle moving in a plane under the influence of a central potential is given by $\mathrm{L}=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-\mathrm{V}(r)$. The generalized moment corresponding to r and θ are given by :
(a) $m \dot{r}$ and $m r^{2} \theta$
(b) $m \dot{r}$ and $m r \theta$
(c) $m \dot{r}^{2}$ and $m r^{2} \dot{\theta}$
(d) $m \dot{r}^{2}$ and $m r^{2} \dot{\theta}^{2}$
(B-16) P. T. O.
8. The action and angle variable have the dimensions of :
(a) force and angle
(b) angular momentum and angle
(c) energy and angle
(d) are dimensionless quantities
9. What is the order of error in the expression $\mathrm{D}^{2}=\frac{1}{h^{2}}\left(\delta^{2}-\frac{\delta^{4}}{12}\right)$?
(a) $\mathrm{O}\left(h^{2}\right)$
(b) $\mathrm{O}\left(h^{3}\right)$
(c) $\mathrm{O}\left(h^{4}\right)$
(d) $\mathrm{O}\left(h^{5}\right)$
10. What is $(\Delta+\nabla)$?
(a) $\mu \delta$
(b) $2 \delta \mu$
(c) $\mathrm{E}+\mathrm{E}^{-1}$
(d) δ^{2}
