PHY-501

Mathematical Physics and Classical Mechanics M. Sc. PHYSICS (MSCPHY-12/13/16)
 First Year, Examination, 2017

Time: $\mathbf{3}$ Hours

Max. Marks : 80
Note : This paper is of eighty ($\mathbf{8 0}$) marks containing three (03) Sections A, B and C. Learners are required to attempt the questions contained in these Sections according to the detailed instructions given therein.

Section-A
(Long Answer Type Questions)
Note: Section 'A' contains four (04) long answer type questions of nineteen (19) marks each. Learners are required to answer two (02) questions only.

1. Describe recurrence formula for $\mathrm{H}_{n}(x)$ and to show that $\mathrm{H}_{n}(x)$ is a solution of Hermite equation. Also find the value of $\int_{-\infty}^{\infty} e^{-x^{2}} \mathrm{H}_{2}(x) \mathrm{H}_{3}(x) d x$.
2. (a) Express the functions :

$$
f(x)=\left\{\begin{array}{cc}
l \text { when } & |n| \leq l \\
0 & |n|>l
\end{array}\right.
$$

as a Fourier integral.
Hence evaluate :

$$
\int_{0}^{\infty} \frac{\sin \lambda \cos \lambda x}{\lambda} d \lambda
$$

(b) Find the Laplace transform of $(1+\sin 2 t)$.
3. State and explain the Hamilton's principle of least action. Derive Lagrange's equation from Hamilton's principle. When string of a pendulum is elastic then set up Lagrange's equation for small oscillation where motion is considered to a vertical plane.
4. Derive an expression for the Gregory-Newton forward and backward difference interpolation formula.

Section-B

(Short Answer Type Questions)

Note : Section 'B' contains eight (08) short answer type questions of eight (08) marks each. Learners are required to answer four (04) questions only.

1. Show that:

$$
\frac{d}{d x} \mathrm{~J}_{n}^{2}+\mathrm{J}_{n+1}^{2}=2\left(\frac{n}{x} \mathrm{~J}_{n}^{2}-\frac{n+1}{x} \mathrm{~J}_{n+1}^{2}\right)
$$

2. Explain the derivative of two-dimensional wave equation.
3. Show that $\frac{\partial A_{\lambda}}{\partial x_{\mu}}$ is not a tensor although A_{λ} is a covariant tensor of rank one.
4. Surface as a sphere is a two-dimensional Riemannian space. Find the fundamental metric tensor.
5. Discus in brief equation of canonical transformation.
6. Explain Hamilton-Jacobi theory and show that the transformation $q=\sqrt{2} \sin \mathrm{Q}$ and $p=\sqrt{2} p \cos \mathrm{Q}$ is canonical.
7. Derive an expression for the Stirling interpolation formula.
8. Explain numerical solutions of ordinary differential equation with an example.

Section-C

(Objective Type Questions)
Note: Section 'C' contains ten (10) objective type questions of one (01) mark each. All the questions of this Section are compulsory.

1. The integral $\int_{0}^{n} \mathrm{P}_{n}(\cos \theta) \sin 2 \theta d \theta, n>1$ where $\mathrm{P}_{n}(x)$ is the Legendre polynomial of degree n equal to :
(a) 1
(b) $\frac{1}{2}$
(c) 0
(d) 2
2. If $\mathrm{J}_{n+1}(x)=\frac{2}{x} \mathrm{~J}_{n}(x)-\mathrm{J}_{0}(x)$, then n is :
(a) 0
(b) 2
(c) -1
(d) None of the above
P. T. O.
3. In the Fourier transform the value of $\int_{0}^{\infty} e^{-x^{2}} d x$ is :
(a) $\frac{\pi}{2}$
(b) $\frac{\sqrt{\pi}}{2}$
(c) $\frac{\pi}{\sqrt{2}}$
(d) $\sqrt{\frac{\pi}{2}}$
4. If $\mathrm{L}\{\mathrm{F}(t)\}=\bar{f}(s)$, then $\mathrm{L}\{t \mathrm{~F}(t)\}$ is :
(a) $\bar{f}^{\prime}(s)$
(b) $-\bar{f}^{\prime}(s)$
(c) $\quad \bar{f}^{\prime}(s)+\bar{f}(s)$
(d) $s \bar{f}^{\prime}(s)+\bar{f}(s)$
5. If A^{μ} and B_{μ} components of contravarient and covariant tensors, what is the nature of the quantity $\mathrm{A}^{\mu} \mathrm{B}_{\mu}$:?
(a) A covariant tensor of rank 2
(b) Mixed tensor of rank 1
(c) Rank zero scale
(d) A mixed tensor of rank 2
6. The Christoffel symbols of the first kind $[i j, k]$ is :
(a) $\frac{1}{2}\left[\frac{\partial g_{j k}}{\partial x^{i}}-\frac{\partial g_{i k}}{\partial x^{j}}-\frac{\partial g_{i j}}{\partial x^{k}}\right]$
(b) $\frac{1}{2}\left[\frac{\partial g_{j k}}{\partial x^{i}}-\frac{\partial g_{i k}}{\partial x^{j}}+\frac{\partial g_{i j}}{\partial x^{k}}\right]$
(c) $\frac{1}{2}\left[\frac{\partial g_{j k}}{\partial x^{i}}+\frac{\partial g_{i k}}{\partial x^{j}}-\frac{\partial g_{i j}}{\partial x^{k}}\right]$
(d) $\frac{1}{2}\left[\frac{\partial g_{j k}}{\partial x^{i}}+\frac{\partial g_{i k}}{\partial x^{j}}+\frac{\partial g_{i j}}{\partial x^{k}}\right]$
7. In the case of canonical transformation :
(a) The form of the Hamilton equation is preserved.
(b) The form of Lagrange equations is preserved.
(c) Hamilton's principle is satisfied in old as well as in the new co-ordinates.
(d) The form of the Hamilton's equations may or may not be preserved.
8. The equation $\frac{d}{d t}\left(\frac{\partial \mathrm{~L}}{\partial q_{i}}\right)-\frac{\partial \mathrm{L}}{\partial q_{i}}=0$ where $\mathrm{L}=\mathrm{T}-\mathrm{V}$ is :
(a) Lagrangian equation for conservative system.
(b) Lagrangian equation for non-conservative system.
(c) Equation of motion of harmonic oscillator.
(d) None of these
P. T. O.
9. For Lagrange's interpolation formula if $f(0.5)=4.56$ and $f(0.8)=5.07$, the value of $f(0.55)$ is :
(a) 4.645
(b) 6.326
(c) 4.000
(d) 5.326
10. Runge-Kutta method for second order, first degree linear differential equation is :
(a) $\frac{d y}{d x}=f\left(x, y, \frac{d^{2} y}{d x^{2}}\right)$
(b) $\frac{d^{2} y}{d x^{2}}=f\left(x, y, \frac{d y}{d x}\right)$
(c) $\frac{d y}{d x}=f\left(x, y, \frac{d y}{d x}\right)$
(d) $\frac{d^{2} y}{d x^{2}}=f\left(x, y, \frac{d x}{d y}\right)$

PHY-501

