\qquad

MAT-501

Advanced Algebra M. Sc. MATHEMATICS (MSCMAT-12)

First Year, Examination, 2017

Time : 3 Hours

Max. Marks : 80
Note : This paper is of eighty (80) marks containing three (03) Sections A, B and C. Learners are required to attempt the questions contained in these Sections according to the detailed instructions given therein.

Section-A

(Long Answer Type Questions)
Note : Section 'A' contains four (04) long answer type questions of nineteen (19) marks each. Learners are required to answer two (02) questions only.

1. Let H and N be two subgroups of G such that N is normal in G . Then $\mathrm{H} \cap \mathrm{N}$ is a normal subgroup of H and $\frac{\mathrm{H}}{\mathrm{H} \cap \mathrm{N}} \cong \frac{\mathrm{HN}}{\mathrm{N}}$.
2. Let G be a group and $\mathrm{N}<\mathrm{G}$. If N and G / N are solvable then G / N is solvable.
3. Let V be a finite dimensional vector space over the field F then there is a natural isomorphism of V onto V**.
4. State and prove Cayley-Hamilton theorem.
P. T. O.

Section-B

(Short Answer Type Questions)
Note : Section 'B' contains eight (08) short answer type questions of eight (08) marks each. Learners are required to answer four (04) questions only.

1. Let G_{1} and G_{2} be groups, then :

$$
\mathrm{G}_{1} \times \mathrm{G}_{2}=\mathrm{G}_{2} \times \mathrm{G}_{1}
$$

2. Let R be a Euclidean ring. A non-zero $a \in \mathrm{R}$ is a unit iff $d(a)=d(1)$, where 1 is the unity element of R .
3. Show that a left ideal M in a ring R is an R -module.
4. If $B=\{(1,0),(0,1)\}$ is the usual basis R^{2}. Determine its dual basis.
5. Let K be an extension of a field F . Then the elements of K which are algebraic over F form a subfield of K .
6. Any algebraic extension of a finite field F is a separable extension.
7. For any matrix A over a field F. Rank $A=\operatorname{Rank} A^{T}$.
8. Any orthogonal set of non-zero vectors in an inner product space is linearly independent.

Section-C

(Objective Type Questions)

Note: Section 'C' contains ten (10) objective type questions of one (01) mark each. All the questions of this Section are compulsory.

Write True/False in the following questions.

1. External direct product and internal direct product of same factors are isomorphic.
2. The centre of a group is abelian.

[3]

3. Every ring is a Euclidean Ring.
4. There are two binary operations defined in an R module.
5. A linear transformation maps zero to zero.

Fill in the blanks in the following questions.
6. Matrix A is orthogonal then $\mathrm{AA}^{\mathrm{T}}=$ \qquad
7. Let A and B be any two similar matrices over the same field F , then $\operatorname{det} \mathrm{A}=$ \qquad . .
8. Being similar is an relation on the set of all $n \times n$ matrices having entries in the same field.
9. A field A is called field if all finite extensions of F are separable.
10. A linear transformation is also known as \qquad

