Roll No.

BCA -10(Bachelor of Computer Application)

Second Semester, Examination-2012
BCA - 205
Mathematics II

Note: The Question paper is divided into three sections A, B and C. Answer the questions as per instructions given in each section.

Section -A

(Long Answer's Question)

Note: Answer any two questions. Each question carries 15 marks.
$2 \times \mathbf{1 5 = 3 0}$

1. Prove that the greatest integer function $[x]$ is continuous at all points except at Integer points.
2. Find the area bounded by the curve $x^{2}=4 y$ and the straight line $x=4 y-2$.
3. Prove that a sequence of real numbers converges if and only if it is a Cauchy Sequence.
4. Show that the circle on the chord $x \cos \alpha+y \sin \alpha=p$ of the circle $x^{2}+y^{2}=a^{2}$ as
Diameter is $x^{2}+y^{2}-a^{2}-2 p(x \cos \alpha+y \sin \alpha-p)=0$.

Section - B

(Short Answer's Question)

Note: Answer any four questions. Each question carries 5 marks. $\mathbf{4} \times \mathbf{5 = 2 0}$

1. Evaluate $\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin x}{\left(\frac{\pi}{2}-x\right)^{2}}$
2. Discuss the continuity of the function $f(x)$ at $x=2$

$$
f(x)= \begin{cases}2-x, & x<2 \\ 2+x, & x \geq 2\end{cases}
$$

3. Evaluate $\int \frac{4\left(\sin ^{-1} x\right)^{3}}{\sqrt{1-x^{2}}} d x$
4. Evaluate $\int \frac{\sin ^{-1} x}{(1-x)^{3 / 2}} d x$
5. Show that the sequence $<S_{n}>$, where

$$
S_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3} \ldots \ldots \ldots . .+\frac{1}{n+n}, \text { is convergent. }
$$

6. Find two positive numbers x and y such that $x+y=60$ and $x y^{3}$ is maximum.
7. For what value of k will the straight line $3 x+4 y=k$ touch the circle? $x^{2}+y^{2}=10 x$.
8. Prove that $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$.
Section - C

Objective Question (Compulsory)

Note: Answer all questions. Each question carries 1 mark. $\quad 10 \times 1=10$
Note: Write True/False against the following-

1. Every constant function is continuous everywhere (True / False)
2. Every convergent sequence has a unique limit. (True/ False)
3. The equation of the straight line which cuts off intercepts a and b respectively from
the x and y-axis is $\frac{x}{a}+\frac{y}{b}=1$.
(True/ False).
4. Definite integration satisfies the property $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(t) d t$.
5. The value of e lie between 2 and 3 . (True/ False).

Choose the correct alternative.
6. If $n \in Q$, than $\lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}$ is:
(a) $(n-1) a^{n}$
(b) $n a^{n}$
(c) $n a^{n-1}$
(d) None of these.
7. The value of $\int_{o}^{\pi / 4} \tan ^{2} x d x$ is:
(a). $\pi / 4$
(b). $(\pi / 4)^{2}$
(c). $(1-\pi / 4)$
(d). $\pi / 2$
(8) The distance between the line $12 x-5 y+9=0$ and the point $(2,1)$ is:
(a) $13 / 28$
(b) $28 / 13$
(c) $14 / 27$
(d) $23 / 14$
(9) For any sequence $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ of real numbers. We always have
(a). $\lim _{x \rightarrow \infty} \operatorname{Sup}\left(a_{n}+b_{n}\right)=\lim _{x \rightarrow \infty} \operatorname{Supa}_{n}+\lim _{x \rightarrow \infty} \operatorname{Supb}_{n}$
(b). $\lim _{x \rightarrow \infty} \operatorname{Sup}\left(a_{n}+b_{n}\right) \leq \lim _{x \rightarrow \infty} \operatorname{Supa}_{n}+\lim _{x \rightarrow \infty} \operatorname{Supb}_{n}$
(c). $\lim _{x \rightarrow \infty} \operatorname{Sup}\left(a_{n}+b_{n}\right) \geq \lim _{x \rightarrow \infty} \operatorname{Supa}_{n}+\lim _{x \rightarrow \infty} \operatorname{Sup}_{n}$
(d). None of the above.
10. The equation of the circle whose center is $(2,-3)$ and radius is 8 will be:
(a). $x^{2}+y^{2}-4 x+6 y-51=0$
(b). $x^{2}-y^{2}+4 x+6 y-51=0$
(c). $x^{2}+y^{2}-4 x-6 y+51=0$
(d). None of these.

