Roll No.....

BCA -10(Bachelor of Computer Application)

Second Semester, Examination-2012

BCA – 205

Mathematics II

Time: 3 Hours

Max Marks: 60

Note: The Question paper is divided into three sections A, B and C. Answer the questions as per instructions given in each section.

Section –A

(Long Answer's Question)

Note: Answer any two questions. Each question carries 15 marks. $2 \times 15=30$

- $2 \times 15=30$
 - Prove that the greatest integer function [x] is continuous at all points except at Integer points.

2. Find the area bounded by the curve $x^2 = 4y$ and the straight line

x = 4y - 2.

- **3.** Prove that a sequence of real numbers converges if and only if it is a Cauchy Sequence.
- 4. Show that the circle on the chord $x \cos \alpha + y \sin \alpha = p$ of the circle $x^2 + y^2 = a^2$ as

Diameter is $x^2 + y^2 - a^2 - 2p(x \cos \alpha + y \sin \alpha - p) = 0.$

Section – B

(Short Answer's Question)

Note: Answer any four questions. Each question carries 5 marks. $4 \times 5=20$

1. Evaluate
$$\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\left(\frac{\pi}{2} - x\right)^2}$$

2. Discuss the continuity of the function f(x) at x = 2

$$f(x) = \begin{cases} 2 - x, & x < 2\\ 2 + x, & x \ge 2 \end{cases}$$

3. Evaluate
$$\int \frac{4(\sin^{-1} x)^3}{\sqrt{1-x^2}} dx$$

- 4. Evaluate $\int \frac{\sin^{-1} x}{(1-x)^{3/2}} dx$
- 5. Show that the sequence $\langle S_n \rangle$, where

$$S_n = \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \frac{1}{n+n}$$
, is convergent.

6. Find two positive numbers x and y such that x + y = 60 and xy^3 is maximum.

7. For what value of k will the straight line 3x+4y = k touch the circle? $x^2 + y^2 = 10x.$

8. Prove that
$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$$
.

Section – C

Objective Question (Compulsory)

Note: Answer all questions. Each question carries 1 mark. $10 \times 1 = 10$

Note: Write True/False against the following-

1. Every constant function is continuous everywhere (True / False)

2. Every convergent sequence has a unique limit. (True/ False)

3. The equation of the straight line which cuts off intercepts a and b respectively from

the x and y - axis is $\frac{x}{a} + \frac{y}{b} = 1$. (True/ False).

4. Definite integration satisfies the property $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(t) dt$.

(True/ False) (True/ False).

5. The value of e lie between 2 and 3.

Choose the correct alternative.

6. If
$$n \in Q$$
, than $\lim_{x \to a} \frac{x^n - a^n}{x - a}$ is:

(a) $(n-1)a^n$ (b) na^n (c) na^{n-1} (d) None of these. 7. The value of $\int_{0}^{\pi/4} \tan^2 x \, dx$ is:

(a).
$$\pi/4$$
 (b). $(\pi/4)^2$ (c). $(1-\pi/4)$
(d). $\pi/2$

(8) The distance between the line 12x - 5y + 9 = 0 and the point (2, 1) is:

(9) For any sequence $\{a_n\}$ and $\{b_n\}$ of real numbers. We always have

- (a). $\lim_{x \to \infty} Sup(a_n + b_n) = \lim_{x \to \infty} Supa_n + \lim_{x \to \infty} Supb_n$
- (b). $\lim_{x\to\infty} Sup(a_n + b_n) \le \lim_{x\to\infty} Supa_n + \lim_{x\to\infty} Supb_n$
- (c). $\lim_{x\to\infty} Sup(a_n + b_n) \ge \lim_{x\to\infty} Supa_n + \lim_{x\to\infty} Supb_n$
- (d). None of the above.

10. The equation of the circle whose center is (2, -3) and radius is 8 will be:

- (a). $x^2 + y^2 4x + 6y 51 = 0$
- (b). $x^2 y^2 + 4x + 6y 51 = 0$
- (c). $x^2 + y^2 4x 6y + 51 = 0$
- (d). None of these.