Roll No.

BCA-05

Discrete Mathematics

Bachelor of Computer Application (BCA-11/16)
Second Semester, Examination, 2017

Time : 3 Hours

Max. Marks : 70
Note: This paper is of seventy (70) marks containing three (03) sections A, B, and C. Attempt the questions contained in these sections according to the detailed instructions given therein.

Section-A

(Long Answer Type Questions)
Note: Section 'A' contains four (04) long answer type questions of fifteen (15) marks each. Learners are required to answer two (02) questions only.

1. If A be a square matrix, show that with the help of an appropriate example :
(a) A^{\prime} is a symmetric matrix.
(b) $\mathrm{A}+\mathrm{A}^{\prime}$ is a symmetric and $\mathrm{A}-\mathrm{A}^{\prime}$ is skew symmetric.
(c) A is the sum of symmetric and skew symmetric matrix.
2. Prove that a ring R is commutative ring if and only if :

$$
(a+b)^{2}=a^{2}+2 a b+b^{2} \text { for all } a, b \in \mathrm{R}
$$

3. (a) In a class of 120 students numbered 1 to 120 , all even numbered students opt all Physics, whose numbers are divisible by 5 opt for chemistry and those whose numbers are divisible by 7 opt for Math. How many opt for none of the three subjects?
(b) Show that $p \rightarrow \sim q$ is a valid conclusion from the given $p \rightarrow q, r \rightarrow \sim q$.
4. Solve by Cramer's rule :

$$
\begin{gathered}
x+y-2 z=1 \\
2 x-7 z=3 \\
x+y-z=5
\end{gathered}
$$

Section-B

(Short Answer Type Questions)

Note : Section ' B ' contains eight (08) short answer type questions of five (5) marks each. Learners are required to answer six (06) questions only.

1. Prove that :

$$
\mathrm{A} \cup \mathrm{~A}^{\prime}=\mathrm{U} \text { and } \mathrm{A} \cap \mathrm{~A}^{\prime}=\phi
$$

2. Define Nilpotent matrix, idempotent matrix, scalar matrix and unit matrix with suitable example.
3. Define tautology and contradiction with suitable example.
4. Define a ring with suitable example.
5. State and prove pigeonhole principle.
6. Prove that :

$$
A \times(B \cup C)=(A \times B) \cup(A \times C)
$$

7. If $f: \mathrm{A} \rightarrow \mathrm{B}$ and $g: \mathrm{B} \rightarrow \mathrm{C}$ be one onto function, then prove that $(g \circ f)$ is also one to one onto.
8. Prove by induction that the sum of thee cubes of 3 consecutive integers is divisible by 9 .

Section-C

(Objective Type Questions)

Note : Section 'C' contains ten (10) objective type questions of one (01) mark each. All the questions of this section are compulsory.

1. A is an ordered collection of objects.
(a) Relation
(b) Function
(c) Set
(d) Proposition
2. The set O of odd positive integers less than 10 can be expressed by
(a) $\{1,2,3\}$
(b) $\{1,3,5,7,9\}$
(c) $\{1,2,5,9\}$
(d) $\{1,5,7,9,11\}$
3. Power set of empty set has exactly \qquad subset.
(a) One
(b) Two
(c) Zero
(d) Three
P. T. O.
4. What is the Cartesian product of $\mathrm{A}=\{1,2\}$ and $\mathrm{B}=\{a, b\}$?
(a) $\{(1, a),(1, b),(2, a),(b, b)\}$
(b) $\{(1,1),(2,2),(a, a),(b, b)\}$
(c) $\{(1, a),(2, a),(1, b),(2, b)\}$
(d) $\{(1,1),(a, a),(2, a),(1, b)\}$
5. The Cartesian product of $\mathrm{B} \times \mathrm{A}$ is equal to the Cartesian product $\mathrm{A} \times \mathrm{B}$. Is it true for false ?
(a) True
(b) False
6. Which is the cardinality of the set of odd positive integers less than 10 ?
(a) 10
(b) 5
(c) 3
(d) 20
7. Which of the following two sets are equal ?
(a) $\mathrm{A}=\{1,2\}$ and $\mathrm{B}=\{1\}$
(b) $\mathrm{A}=\{1,2\}$ and $\mathrm{B}=\{1,2,3\}$
(c) $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{2,1,3\}$
(d) $\mathrm{A}=\{1,2,4\}$ and $\mathrm{B}=\{1,2,3\}$
8. The set of positive integers is \qquad
(a) Infinite
(b) Finite
(c) Subset
(d) Empty
9. What is the cardinality of the power set of the set $\{0,1,2\}$?
(a) 8
(b) 6
(c) 7
(d) 9
10. A partial ordered relation is transitive, reflexive and
(a) Antisymmetric
(b) Bisymmetric
(c) Antireflexive
(d) Asymmetric
