
BBA-102

Business Mathematics (व्यावसायिक गणित)

Bachelor of Business Administration (BBA–10/12/16/17)

First Semester, Examination, 2018

Time: 3 Hours Max. Marks: 80

Note: This paper is of eighty (80) marks containing three (03) Sections A, B and C. Attempt the questions contained in these Sections according to the detailed instructions given therein.

Section-A

(Long Answer Type Questions)

Note: Section 'A' contains four (04) long answer type questions of nineteen (19) marks each. Learners are required to answer *two* (02) questions only.

1. Find the sum of the series:

$$1 + \frac{2}{5} + \frac{3}{5^2} + \dots$$
 upto *n* terms.

2. Find the inverse of the matrix:

$$\begin{bmatrix}
 1 & 2 & -1 \\
 -4 & -7 & 4 \\
 -4 & -9 & 5
 \end{bmatrix}$$

(B-81) P. T. O.

BBA-102

3. (i) If
$$A = \begin{pmatrix} 0 & 1 & 2 \\ 2 & 3 & 4 \\ 4 & 5 & 6 \end{pmatrix}$$
 and $K_1 = i$, $K_2 = 2$, verify

$$(K_1 + K_2) A = K_1 A + K_2 A.$$

(ii) If
$$A = \begin{pmatrix} 0 & 2 & 3 \\ 2 & 1 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 7 & 6 & 3 \\ 1 & 4 & 5 \end{pmatrix}$, find the value of $2A + 3B$.

4. From the following equation find the value of x and y:

$$2\begin{bmatrix} x & 5 \\ 7 & y - 3 \end{bmatrix} + \begin{bmatrix} 3 & -4 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 6 \\ 15 & 14 \end{bmatrix}$$

Section-B

(Short Answer Type Questions)

Note: Section 'B' contains eight (08) short answer type questions of eight (8) marks each. Learners are required to answer *four* (04) questions only.

- 1. Find the sum of $\frac{3}{4}$, $\frac{2}{3}$, $\frac{7}{12}$, upto 19 terms.
- 2. If $x = 3^{\frac{2}{3}} + 3^{-\frac{2}{3}}$, show that:

$$9x^3 - 27x = 82$$

3. Let A, B, C be three sets, then:

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

4. Simplify:

$$\frac{x^{m+2n} \cdot x^{3m-8n}}{x^{5m-6n}}$$

(B-81)

[3]

BBA-102

5. Which terms of the A. P.:

- 6. Insert two harmonic means between $\frac{1}{2}$ and $\frac{4}{17}$.
- 7. If H_1, H_2, \dots, H_n are *n* harmonic means between two given numbers, then show that :

$$H_1H_2 + H_2H_3 + \dots + H_{n-1}H_n = (n-1) H_1H_n$$

8. Expand $(x - 1)^7$.

Section-C

(Objective Type Questions)

Note: Section 'C' contains ten (10) objective type questions of one (01) mark each. All the questions of this Section are compulsory.

Write True/False against the following:

- 1. If $\frac{dx}{dy} g(x) = F(x)$, then F(x) dx = g(x) + C. (True/False)
- 2. If $y = x^2 \sin x$, then $\frac{dy}{dx} = 2x \sin x x^2 \cos x$.

(True/False)

3. If $a = b^c$, $b = c^a$ and $c = a^b$, then abc = 2.

(True/False)

4. Sale = Variable Cost + Fixed Cost + Profit/Loss.

(True/False)

5. If
$$y = x^3 + \tan x$$
, then $\frac{d^2y}{dx^2} = 2 \sec^2 x \tan x$.

(True/False)

(B-81) P. T. O.

- 6. A matrix which has exactly one column is called a column matrix. (True/False)
- 7. A matrix which has exactly one row is called a square matrix. (True/False)
- 8. The main value of $\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$. (True/False)
- 9. If $y = A \sin x + B \cos x$, then $\frac{d^2 y}{dx^2} + y = 0$.

(True/False)

10. $\log_b pq = \log_b p + \log_b q$.

(True/False)

BBA-102 180

(B-81)