MAT-509

Integral Transforms and Integral Equations

 M. Sc. MATHEMATICS (MSCMAT-12) Second Year, Examination, 2017
Time : 3 Hours

Max. Marks : 60
Note : This paper is of Sixty (60) marks containing three (03) sections A, B and C. Learners are required to attempt the questions contained in these sections according to the detailed instructions given therein.

Section-A

(Long Answer Type Questions)
Note: Section 'A' contains four (04) long answer type questions of fifteen (15) marks each. Learners are required to answer two (02) questions only.

1. Reduce the differential equation :

$$
\phi^{\prime \prime}(x)-3 \phi^{\prime}(x)+2 \phi(x)=4 \sin x
$$

with the conditions
$\phi(0)=1, \quad \phi^{\prime}(0)=-2, \quad$ into a non-homogenous Volterra's integral equation of second kind.
2. Solve $\left(\mathrm{D}^{2}+9\right) y=\cos 2 t$ if $y(0)=1, \quad y\left(\frac{\pi}{2}\right)=-1$ and $\mathrm{D} \equiv \frac{d}{d x}$.
3. Find the Fourier sine and cosine transform of e^{-x} and using the inversion formulae, recover the original functions in both cases.
4. If $f^{(n)}(x)$ is the nth derivative of $f(x)$ with respect to x, then prove that :

$$
\mathrm{M}\left[f^{(n)}(x) ; \mathrm{P}\right]=\frac{(-1)^{n} \sqrt{\mathrm{P}}}{\sqrt{\mathrm{P}-n}} \mathrm{M}[f(\mathrm{P}-n)]
$$

Section-B

(Short Answer Type Questions)

Note : Section ' B ' contains eight (08) short answer type questions of five (05) marks each. Learners are required to answer four (04) questions only.

1. Prove that : $\phi(x)=\left(1+x^{2}\right)^{-3 / 2}$ is a solution of Volterra integral equation :

$$
\phi(x)=\frac{1}{1+x^{2}}-\int_{0}^{x}\left(\frac{t}{1+t^{2}}\right) \phi(t) d t
$$

2. Form an integral equation corresponding to the differential equation :

$$
\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0
$$

with the initial conditions $y(0)=1, y^{\prime}(0)=0$.
3. Find the resolvent kernel of integral equation

$$
\begin{aligned}
& \phi^{\prime \prime}(x)-2 \phi^{\prime}(x)+\phi(x)=0 ; \quad \phi(t)=0, \quad \phi^{\prime}(t)=1 \quad \text { if } \\
& k(x, t)=2-(x-t), \lambda=1 .
\end{aligned}
$$

4. State and prove second shifting theorem for Laplace transform.
5. For Mellin transform, prove that :

$$
\mathrm{M}\left[\frac{1}{x} f\left(\frac{1}{x}\right) ; \mathrm{P}\right]=\mathrm{M} f(1-\mathrm{P})
$$

6. Find the Hankel transform of $\frac{d f}{d x}$ when $f=\frac{e^{-a x}}{x}$ and $n=1$.
7. Find :

$$
\mathrm{L}^{-1}\left\{\frac{e^{4-3 \mathrm{P}}}{(\mathrm{P}+4)^{5 / 2}}\right\}
$$

8. Evaluate :

$$
\int_{0}^{\infty}\left(\frac{e^{-a t}-e^{-b t}}{t}\right) d t
$$

Section-C

(Objective Type Questions)
Note: Section 'C' contains ten (10) objective type questions of one (01) mark each. All the questions of this section are compulsory.

1. An integral equation in Fredholm type if :
(i) Both the limits are constants
(ii) Both the limits are variable
(iii) Only upper limit is variable
(iv) Only lower limit is variable
2. In integral equations, $\mathrm{G}(x, t)$ is called :
(i) Fredholm's function
(ii) Green's function
(iii) Volterra's function
(iv) None of these
3. Equation, which and unknown function appears under the integral sign is called as :
(i) Linear differential equation
(ii) Partial integral equation
(iii) Linear integral equation
(iv) Gaussian integral equation
4. The solution, corresponding to eigen values of λ, can be expressed as :
(i) Sum of eigen functions
(ii) Arbitrary multiples of eigen functions
(iii) Difference of eigen functions
(iv) None of these
5. $\mathrm{L}\{\sinh a t\}$ is, $\mathrm{P}>|a|:$
(i) $\frac{a}{\mathrm{P}^{2}+a^{2}}$
(ii) $\frac{\mathrm{P}}{\mathrm{P}^{2}+a^{2}}$
(iii) $\frac{\mathrm{P}}{\mathrm{P}^{2}-a^{2}}$
(iv) None of these
6. A kernel $\mathrm{K}(x, t)$ of Fredholm integral equation is said to be \qquad if it can be expressed as the sum of a finite number of terms, each of which is the product of a function of x alone and a function of t alone :
(i) Non-degenerate
(ii) Separable
(iii) Non-separable
(iv) Degenerate
7. Hankel transform of $\left\{\frac{e^{-x}}{x}\right\}$ is :
(i) $\left(1+\mathrm{P}^{2}\right)^{-1 / 2}$
(ii) $(1+\mathrm{P})^{-1 / 2}$
(iii) $\left(1+\mathrm{P}^{2}\right)^{-3 / 2}$
(iv) None of these
8. In Mellin transform, $\mathrm{M}\left[x^{a} f(x) ; \mathrm{P}\right]=$:
(i) $\quad \mathrm{M} f(x-a)$
(ii) $\operatorname{M} f(x / a)$
(iii) $\mathrm{M} f(x+a)$
(iv) None of these
9. $\mathrm{L}\left\{t^{2} e^{2 t}\right\}$ is :
(i) $\frac{2}{(\mathrm{P}-2)^{2}}$
P. T. O.
(ii) $\frac{\mathrm{P}}{(\mathrm{P}-2)^{3}}$
(iii) $\frac{2}{(\mathrm{P}-2)^{3}}$
(iv) $\frac{2}{(\mathrm{P}+2)^{3}}$

> 10. $\mathrm{L}\left(\frac{e^{a t}-1}{a}\right)$ is, $\mathrm{P}>0:$
> (i) $\frac{1}{\mathrm{P}(\mathrm{P}+a)}$
(ii) $\frac{1}{\mathrm{P}(\mathrm{P}-a)}$
(iii) $\frac{\mathrm{P}}{\mathrm{P}-a}$
(iv) None of these

MAT-509 40

A-87

