Roll No.

MSCMAT-12 (M.Sc. Mathematics)

First Year Examination-2015
MAT-503

Differential Equations, Calculus of

 Variations and Special FunctionsTime : 3 Hours
Maximum Marks : 60

Note : The Question paper is divided into three section A, B and C. Attempt Questions of each section according to given instruction.

Section - A
(Long Answer Type Questions)
Note : Answer any two questions. All questions carries equal marks.
($2 \times 15=30$)

1. Solve $\mathrm{t}+\mathrm{s}+\mathrm{q}=0$
2. Prove that $\mathrm{J}_{0}^{2}+2\left(\mathrm{~J}_{1}^{2}+\mathrm{J}_{2}^{2}+\mathrm{J}_{3}^{2}+\ldots.\right)=1$
3. \quad Solve $z(z-y) d x+(z+x) z d y+x(x+y) d z=0$
4. Prove that $\int_{0}^{\infty} e^{-x} L_{n}(x) L_{m}(x) d x=\delta_{m n}$

Section - B

(Short Answer Type Questions)

Note : Answer any four (04) questions. Each question carries equal marks.
$(4 \times 5=20)$

1. Solve

$$
(y z+x y z) d x+(z x+x y z) d y+(x y+x y z) d z=0
$$

2. Solve

$$
y s+p=\cos (x+y)-y \sin (x+y)
$$

3. Show that

$$
\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{~F}(\alpha ; \beta ; \gamma ; \mathrm{x})=\frac{\alpha \beta}{\gamma} \mathrm{F}(\alpha+1, \beta+1 ; v+1 ; \mathrm{x})
$$

4. Evaluate $\int_{-\infty}^{\infty} \mathrm{xe}^{-\mathrm{x}^{2}} \mathrm{H}_{\mathrm{n}}(\mathrm{x}) \mathrm{H}_{\mathrm{m}}(\mathrm{x}) \mathrm{dx}$
5. Show that $\int_{0}^{\infty} x^{-n} J_{n+1}(x) d x=\frac{1}{2^{n} \Gamma(n+1)}, \quad n>\frac{-1}{2}$
6. Prove that

$$
\mathrm{H}_{2 \mathrm{n}}(0)=(-1)^{\mathrm{n}} \frac{(2 \mathrm{n})!}{\mathrm{n}!}
$$

7. Solve
$\mathrm{pt}-\mathrm{qs}=\mathrm{q}^{3}$
8. Solve
$\left(y z+z^{2}\right) d x-x z d y+x y d z=0$

Section - C

(Objective Type Questions)

Note : Section 'C' contains ten (10) objective-type questions of $1 / 2$ mark each. All the questions of this section are compulsory.

1. $\mathrm{H}_{0}^{1}(\mathrm{x})=$ \qquad
2. $\left|\mathrm{J}_{0}(\mathrm{x})\right| \leq$ \qquad
3. $\mathrm{L}_{\mathrm{n}}^{1}(\mathrm{o})=$ \qquad
4. $F(\alpha, \beta, \gamma ; 1)=$ \qquad
5. $\quad{ }_{1} \mathrm{~F}_{1}(\alpha ; \alpha ; \mathrm{x})=$ \qquad
6. $\quad P_{n}(-1)=$ \qquad
7. $F(\alpha ; \beta ; x)=$ \qquad . .
8. $f(x ; y ; z ; p ; q)=0$ is a \qquad equation of the order.
9. The diff equation $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{1}+n(n+1) y=0$ is called Legendre's equation, if n is \qquad
10. $P d x+Q d y+R d z=0$, where P, Q, R are equations of x, y and z is called a
