Roll No.

MSCMAT-12 (M.Sc. Mathematics) First Year Examination-2015 MAT-503

Differential Equations, Calculus of Variations and Special Functions

Time: 3 Hours Maximum Marks: 60

Note: The Question paper is divided into three section A, B and C. Attempt Questions of each section according to given instruction.

Section - A

(Long Answer Type Questions)

Note: Answer any two questions. All questions carries equal marks. $(2\times15=30)$

1. Solve
$$t + s + q = 0$$

2. Prove that
$$J_0^2 + 2(J_1^2 + J_2^2 + J_3^2 +) = 1$$

3. Solve
$$z(z-y)dx + (z+x) zdy + x(x+y) dz = 0$$

4. Prove that
$$\int_0^\infty e^{-x} L_n(x) L_m(x) dx = \delta_{mn}$$

Section - B

(Short Answer Type Questions)

Note: Answer any four (04) questions. Each question carries equal marks. $(4\times5=20)$

1. Solve

$$(yz + xyz)dx + (zx + xyz)dy + (xy + xyz)dz = 0$$

2. Solve

$$ys + p = \cos(x + y) - y\sin(x + y)$$

3. Show that

$$\frac{\mathrm{d}}{\mathrm{d}x}\mathrm{F}(\alpha;\beta;\gamma;x) = \frac{\alpha\beta}{\gamma}\mathrm{F}(\alpha+1,\beta+1;\nu+1;x)$$

4. Evaluate $\int_{-\infty}^{\infty} x e^{-x^2} H_n(x) H_m(x) dx$

5. Show that
$$\int_0^\infty x^{-n} J_{n+1}(x) dx = \frac{1}{2^n \Gamma(n+1)}$$
, $n > \frac{-1}{2}$

6. Prove that

$$H_{2n}(0) = (-1)^n \frac{(2n)!}{n!}$$

7. Solve

$$pt - qs = q^3$$

8. Solve

$$(yz + z^2)dx - xzdy + xydz = 0$$

Section - C

(Objective Type Questions)

Note: Section 'C' contains ten (10) objective-type questions of ½ mark each. All the questions of this section are compulsory. (10×1=10)

1.
$$H_0^1(x) = \dots$$

2.
$$|J_0(x)| \le \dots$$

3.
$$L_n^1(o) = \dots$$

4.
$$F(\alpha, \beta, \gamma; 1) = \dots$$

5.
$${}_{1}F_{1}(\alpha; \alpha; x) = \dots$$

6.
$$P_n(-1) = \dots$$

7.
$$F(\alpha; \beta; x) = \dots$$

8.
$$f(x; y; z; p; q) = 0$$
 is a equation of the order.

9. The diff equation

 $(1 - x^2)$ y" $- 2xy^1 + n(n + 1)$ y = 0 is called Legendre's equation, if n is

10. Pdx + Qdy + Rdz = 0, where P,Q,R are equations of x, y and z is called a