MSCMAT-12 (M.Sc. MATHEMATICS)

First Year, Examination-2013
MAT-501
Advanced Algebra
Time: 3 Hours
Max. Marks: 60
Note: The question paper is divided in to three sections ' A ' ' B ' and ' C '. Attempt question of each section according to given instructions.

Section - A

Long Answer Questions

Note: Answer any two questions. Each question carries $\mathbf{1 5}$ marks.
2X15=30

1. Prove that a purely transcendental extension is totally transcendental.
2. Let $\mathrm{F} \underline{\mathrm{C}}$ with $|\mathrm{E}: \mathrm{F}|<\infty$. Then prove that following are equivalent.
(i) E is a Galois extension of F
(ii) E is both reparable and normal over F .
(iii) E is splitting with field over F for some reparable polynomial over F .
3. Let G be a finite abelian p -group and $\mathrm{C} \underline{\mathrm{C}} \mathrm{G}$ be cyclic subgroup with maximum possible order. Then prove that $C=C \dot{X} B$ for some subgroup $B C G$.
4. Let U be finitely generated right R -module.

If $\mathrm{UJ}(\mathrm{R})=\mathrm{U}$, then Prove that $\mathrm{U}=0$.

Section - B

Short Answer Questions
Note: Answer any Four Questions. Each question carries 05 marks.
5X4=20

1. Prove that a group G is solvable if and only if $\mathrm{G}^{(\mathrm{n})}=1$ for some n .
2. Let $0 \neq \mathrm{f} \in \mathrm{F}[\mathrm{X}]$. Then prove that there exists $\mathrm{E} \supseteq \mathrm{F}$ such that f splits over E .
3. Let G be finite. Show that G is solvable if G in p - solvable for all primes p .
4. Le $p_{1}, p_{2}, p_{3}, \ldots \ldots \ldots . p_{n}$ be different prime numbers and let $E=Q\left[\sqrt{p_{1}}, \sqrt{p_{2}}, \ldots \ldots \ldots \sqrt{p_{n}}\right]$ in R.
Then show that E is Galois over Q .
5. Prove that the sub modules of the R-module R^{1} are the ideals of R .
6. If an liner product space X is real, show that the condition $\|x\|=\|y\|$ implies
$<x+y, x-y=0$

Explain it geometrically.
7. Let X, Y be vector spaces, both real or both complex

Let $T: D(C) \rightarrow X$ be a linear operator with domain $D(T) C X$ and rang $R(T) C Y$. Then prove that if T^{-1} exists, it is linear operator.
8. If in an inner product space, $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$, then prove that

$$
<x_{n}, y_{n} \rightarrow\langle x, y\rangle
$$

Section - C
Objective Questions
Note: Answer all questions. Each question carries 01 mark
$10 \times 1=10$

Define the following terms:

1. Euclidean Ring.
2. Commutators
3. Rank of a matrix
4. Splitting fields
5. Solvable group
6. Right R-module
7. Inner product space
8. Derived subgroups
9. Homomorphism of fields
10. Euclidean Domain.
