MCA-02/PGDCA-02/M.Sc. IT-02

Digital Logic

Master of Computer Application/P. G. Diploma in
Computer Application/Master of Science in
Information Technology
(MCA/PGDCA/M.Sc. IT-11/12/16/17)
First Semester, Examination, 2018

Time : $\mathbf{3}$ Hours

Max. Marks : 80
Note : This paper is of eighty (80) marks containing three (03) Sections A, B and C. Learners are required to attempt the questions contained in these sections according to the detailed instructions given therein.

Section-A

(Long Answer Type Questions)
Note : Section 'A' contains four (04) long answer type questions of nineteen (19) marks each. Learners are required to answer two (02) questions only.

1. What are Universal gate ? Explain the operations of 2input XNOR gate and realize it using NOR gates.
2. What are the differences between asynchronous and synchronous counter ? Draw a MODE-8 counter and explain its working principle.
3. What is memory ? Explain various types of memories in digital system. List the advantages and limitations of magnetic disk and magnetic tapes as a secondary storage device.
4. What is RAM ? Differentiate SRAM with DRAM. A memory chip is organized as (1024×4) bits RAM. Find the number of such chips required to obtain :
(a) (2048×8) RAM
(b) 4 k bytes of RAM

Section-B

(Short Answer Type Questions)

Note: Section ' B ' contains eight (08) short answer type questions of eight (8) marks each. Learners are required to answer four (04) questions only.

1. Find decimal equivalent of :
(i) $(53 \mathrm{~A} .0 \mathrm{~B} 4)_{16}$
(ii) $(123.21)_{8}$
2. Convert the following Gray codes to Binary codes :
(i) 11011
(ii) 100111
3. Explain Maxterm and Minterm.
4. Define and describe De-Morgan's Theorem.
5. With truth table and logic diagram, explain the working of a full adder circuit.
6. Explain the principle of an encoder and decoder.
7. What are sequential circuits ? Distingish between combinational circuit and sequential circuit.
8. Differentiate between RISC and CISC architecture. Explain ROM family. Discuss the applications of ROM.

Section-C
 (Objective Type Questions)

Note: Section 'C' contains ten (10) objective type questions of one (01) mark each. All the questions of this section are compulsory.

1. The ASCII is a standard \qquad bits code.
(a) 7
(b) 6
(c) 8
(d) 4
2. Radix of binary number system is \qquad
(a) 3
(b) 4
(c) 6
(d) 2
3. Which one of the following is not a valid rule of Boolean algebra?
(a) $\mathrm{A}+1=1$
(b) $\mathrm{A}=\mathrm{A}^{\prime}$
(c) $\mathrm{A} \cdot \mathrm{A}=\mathrm{A}$
(d) $\mathrm{A} .1=\mathrm{A}$
4. According to the associative law of addition :
(a) $\mathrm{AB}=\mathrm{BA}$
(b) $\mathrm{A}=\mathrm{A}+\mathrm{A}$
(c) $\mathrm{A}+(\mathrm{B}+\mathrm{C})=(\mathrm{A}+\mathrm{B})+\mathrm{C}$
(d) $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$
5. The following logic diagram :

is represented by the function :
(a) $\mathrm{D}=\mathrm{A}^{\prime} \cdot(\mathrm{B}+\mathrm{C})$
(b) $\mathrm{D}=\mathrm{A}^{\prime} \cdot(\mathrm{B}+\mathrm{C})^{\prime}$
(c) $\mathrm{A}^{\prime} \cdot \mathrm{B}+\mathrm{AC}$
(d) $\mathrm{D}=\mathrm{A} \cdot(\mathrm{B}+\mathrm{C})$
6. Shift register are :
(a) basically a sequential circuit
(b) a combinational circuit
(c) permanent memory
(d) None of these
7. A 8-to-1 multiplexer has :
(a) 1 control lines
(b) 2 control lines
(c) 3 control lines
(d) 4 control lines
8. A half-adder can add :
(a) Two binary bit
(b) Two binary number of 4 bit each
(c) Add half of a binary number
(d) None of these
9. A simple flip-flop :
(a) is 2 bit memory
(b) is 1 bit memory
(c) is a four state device
(d) has nothing to do with memory
10. Volatile memory device is :
(a) ROM
(b) RAM
(c) Both of the above
(d) None of these
