Roll No.	

BCA-10 (Bachelor of Computer Application)

Second Semester Examination-2014

BCA-201

Basic Digital Electronics

Time Allowed: Three Hours

Maximum Marks: 60

Note: The paper is divided into three sections A, B and C. Notes for each section are given in the section itself.

Section - A (Long answer type Questions)

Note: Answer any 2 Question. Each question carries 15 marks. (2×15=30)

- 1. What are Flip-Flops? Explain the types of Flip-Flops.
- 2. What are universal gate? Explain the operation of 2-input XOR gate and realize it using universal gate.
- 3. What are the differences between asynchronous and synchronous counter? Draw a MODE-8 counter and explain its working principle.

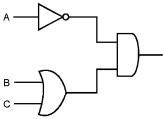
1 PTO

4. Draw the block diagram of :a typical (2048 x 16) bits ROM and describes its working principles.

Section - B

(Short answer type Questions)

Note: Answer any 4 question. Each question carries 5 marks. (4×5=20)


- 1. Define and describe DeMorgan's Theorem.
- 2. Perform the following by 2's complement method:
 - a) 10101 11011
 - b) 100011 -1111
- 3. Convert the following to its decimal equivalent:
 - a) $(81B6.F)_{16}$
 - b) $(765.45)_{s}$
- 4. Prove that (i) $x \cdot x = x$ (ii) x + xy = x
- 5. What is sequential circuit? How it differ from combinational circuit?
- 6. Differentiate between RISC and CISC architecture.
- 7. What are the main component of CPU of a computer system? Explain.
- 8. What is RAM? Give an example. Differentiate SRAM with DRAM.,

Section - C

(Objective type Questions)

Note: Answer all questions. Each question carries 1 Marks. $(10 \times 1=10)$

- 1. Which operations is called Modulo-2-Sum operations:
 - (a) AND
- (b) OR
- (c) XOR
- (d) None of these
- 2. The following logic diagram

- (a) $D = A' \cdot (B+C)$
- (b) $D = A' \cdot (B+C)'$
- (c) $D = A' \cdot (B + AC)$
- (d) D = A. (B+C)
- 3. Shift registers are
 - (a) basically a sequential circuit
 - (b) a combinational circuit
 - (c) permanent memory
 - (d) none of these
- 4. Magnitude comparator
 - (a) magnify any digital signal
 - (b) compares two multi bit binary number
 - (c) compress binary numbers.
 - (d) check error in a binary number

5.	A 8-to-1 multiplexer has				
	(a)	1 control lines	(a)	2 control lines	
	(c)	3 control lines	(d)	4 control lines	
6.	A h	alf-adder can add:			
	(a)	Two binary bit			
	(b)	Two binary number	r of	f 4 bit each	
	(c)	Add half of a bina	ry n	number	
	(d)	None of these			
7.	The	storage element of	stat	ntic device RAM is:	
	(a)	Diode	(b)) Register	
	(c)	Capacitor	(d)) Flip-flop	
8.	T fl	ip-flop is commonly	y use	sed as:	
	(a)	a digital counter of	nly		
	(b)	a delay switch.			
	(c)	a digital counter as	nd fi	frequency divider	
	(d)	none of these			
9.	Bina	ary number 1100 in g	gray	y code will be represented as	
	(a)	1010	(b)	1000	
	(c)	0011	(d)	1001	
10.	A 3-variable Karnaugh map has				
	(a)	eight cells	(b)	three cells	
	(c)	sixteen cells	(d)) four cells	